Sequence-Selective Formation of Synthetic H-Bonded Duplexes
نویسندگان
چکیده
Oligomers equipped with a sequence of phenol and pyridine N-oxide groups form duplexes via H-bonding interactions between these recognition units. Reductive amination chemistry was used to synthesize all possible 3-mer sequences: AAA, AAD, ADA, DAA, ADD, DAD, DDA, and DDD. Pairwise interactions between the oligomers were investigated using NMR titration and dilution experiments in toluene. The measured association constants vary by 3 orders of magnitude (102 to 105 M-1). Antiparallel sequence-complementary oligomers generally form more stable complexes than mismatched duplexes. Mismatched duplexes that have an excess of H-bond donors are stabilized by the interaction of two phenol donors with one pyridine N-oxide acceptor. Oligomers that have a H-bond donor and acceptor on the ends of the chain can fold to form intramolecular H-bonds in the free state. The 1,3-folding equilibrium competes with duplex formation and lowers the stability of duplexes involving these sequences. As a result, some of the mismatch duplexes are more stable than some of the sequence-complementary duplexes. However, the most stable mismatch duplexes contain DDD and compete with the most stable sequence-complementary duplex, AAA·DDD, so in mixtures that contain all eight sequences, sequence-complementary duplexes dominate. Even higher fidelity sequence selectivity can be achieved if alternating donor-acceptor sequences are avoided.
منابع مشابه
H-Bond Self-Assembly: Folding versus Duplex Formation
Linear oligomers equipped with complementary H-bond donor (D) and acceptor (A) sites can interact via intermolecular H-bonds to form duplexes or fold via intramolecular H-bonds. These competing equilibria have been quantified using NMR titration and dilution experiments for seven systems featuring different recognition sites and backbones. For all seven architectures, duplex formation is observ...
متن کاملNovel H-bonded base pairs as potential repeat units for information-bearing macromolecular duplexes: A B3LYP/6-31G search
A number of sets of nitrogenous bases (substituted pyrimidines, pyrazines and pyridines) are studied using the B3LYP/6-31G* strategy (with counterpoise correction) for their ability to associate among themselves and form stable well-defined hydrogen-bonded base pairs. This is to determine their suitability to furnish base pairs which may serve as potential repeat units for H-bonded macromolecul...
متن کاملFactors influencing the extent and selectivity of alkylation within triplexes by reactive G/A motif oligonucleotides.
G/A motif triplex-forming oligonucleotides (TFOs) complementary to a 21 base pair homopurine/homopyrimidine run were conjugated at one or both ends to chlorambucil. These TFOs were incubated with several synthetic duplexes containing the targeted homopurine run flanked by different sequences. The extent of mono and interstrand cross-linking was compared with the level of binding at equilibrium....
متن کاملEffect of bonding temperature on the microstructure and electrochemical corrosion behavior of TLP bonded AISI 304L stainless steel
Transient liquid phase (TLP) bonding of AISI 304L stainless steel was carried out using BNi-2 amorphous interlayer. The microstructure of the joint area was studied by using optical and scanning electron microscopes and energy dispersive spectroscopy. The effect of bonding temperature (1030-1110 °C) was studied on the microstructure and corrosion behavior of the TLP bonded samples. Electrochemi...
متن کاملHomochiral oligomers with highly flexible backbones form stable H-bonded duplexes.
Two homochiral building blocks featuring a protected thiol, an alkene and a H-bond recognition unit (phenol or phosphine oxide) have been prepared. Iterative photochemical thiol-ene coupling reactions were used to synthesize oligomers containing 1-4 phosphine oxide and 1-4 phenol recognition sites. Length-complementary H-bond donor and H-bond acceptor oligomers were found to form stable duplexe...
متن کامل